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ABSTRACT Simulations of Maxwell’s equations for electro-
magnetic waves interacting with planar chiral structures are
shown to depend on the polarization state of the exciting light
field. These results illustrate generic features of light interac-
tion with planar chiral structures and imply broken enantiomeric
symmetry for excitation with circularly polarized light.

PACS 78.67.-n; 11.30.-j

1 Introduction

A chiral object exhibits a left–right asymmetry,
such that the object cannot be brought into congruence with
its mirror image. Chiral objects can exist in two forms that
are otherwise identical left and right mirror images known as
enantiomeric forms. An optical manifestation of chirality is
the ability to rotate the polarization state of light in a fashion
sensitive to the handedness of the object, which is known as
optical activity. Although conventionally chirality is consid-
ered in three dimensions, a planar structure is said to be chiral
if it cannot be brought into congruence with its mirror image
unless it is lifted from the plane. Regular planar chiral struc-
tures (PCS) are rare in nature and only recently have become
the subject of experimental investigations [1–3]. In particu-
lar, recent microscope observations of metallic PCSs com-
posed of fourfold gammadion structures1 revealed unusual
anti-symmetries of the polarized images [2] in reflection. Fur-
thermore, several experiments have reported polarization ro-
tation of light diffracted from [1] and transmitted through [3]
planar chiral nanostructures, showing that the chiral proper-
ties of the gammadions comprising the PCSs can affect the
polarization state of light scattered from them in a fashion
sensitive to the direction of twist. Recent theoretical studies
examined boundary conditions at chiral interfaces [4] and po-
larization eigenstates in far-field diffraction from PCSs [5].

� Fax: +1-520-621-1510, E-mail: reichelt@acms.arizona.edu
1 A gammadion is a star-like structure consisting of several rays or arms
resembling the Greek capital letter gamma Γ . It possesses a center of
rotation. Here and below we investigate gammadions with fourfold rota-
tional symmetry.

In this article we investigate to which extent the symmetry
of the light–matter interaction can result from the planar chi-
ral patterning of the structure alone, i.e., without reference to
the specific properties of the material itself. We demonstrate
using Maxwell’s equations that broken enantiomeric symme-
try and sensitivity to the light polarization state are directly
related to each other and are generic properties of electromag-
netic wave interactions with PCSs. In Sect. 2, we investigate
structures of fourfold gammadions by numerically solving
Maxwell’s equations for various excitation conditions. The
structures considered are assumed to be either purely dielec-
tric or metallic, i.e., containing loss mechanisms. In both
cases we observe broken enantiomeric symmetry if the gam-
madions are illuminated with circularly polarized light, and
this challenges the conventional wisdom that electromagnetic
wave interactions with nonmagnetic and locally isotropic me-
dia are independent of the polarization state of the exciting
light field. In Sect. 3, we elucidate our numerical calculations
using formal solution of Maxwell’s equations, and it is shown
that, within the paraxial approximation, the flow maps exhibit
the same symmetry properties as the PCS, independent of the
polarization state of the exciting light field, whereas beyond
the paraxial approximation the flow maps reflect the com-
bined symmetries of the PCS and the exciting light field. Sec-
tion 4 gives an alternative view of the polarization coupling
that appears beyond the paraxial approximation, and finally
Sect. 5 summarizes our conclusions.

2 Numerical simulations

Our numerical simulations are based on the three-
dimensional macroscopic Maxwell’s equations for the elec-
tric field E and the magnetic induction B

∇ × E = −Ḃ, ∇ × H = Ḋ ,

∇ · D = 0, ∇ · B = 0 , (1)

along with the constitutive relations B = µ0 H for a non-
magnetic medium, and the electric displacement

D(r, t) = ε0

(
E(r, t)+

∫
dt ′ f(r)χ R(t − t ′)E(r, t ′)

)
. (2)

Here χ R(t) is the retarded linear susceptibility for the structure
and f(r) reflects the patterning of the PCS. We assume that
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the medium is everywhere locally isotropic so that the sus-
ceptibility is a scalar function. For the case considered here of
a fourfold planar gammadion, we have the symmetry proper-
ties f(r) = f(Dnπ/2r) and f(Mr) = fR(r) where Dϕ denotes
a rotation in the plane of the PCS, M refers to a reflection at
a line in the plane and fR to the patterning of the enantiomeric
structure.

Figure 1 shows an array of fourfold gammadions with
its left-hand (L) and right-hand (R) form, respectively, i.e.,
L is the enantiomer of R and vice versa. Here, we modeled
the structures assuming an instantaneous, piecewise constant
dielectric function. In the dark areas, χ(t) = 0, correspond-
ing to vacuum, and χ(t) = 12δ(t) in the slab area. The sim-
ulations were performed using the standard finite-difference
time-domain (FDTD) method [6] to solve Maxwell’s equa-
tions, (1), with periodic boundary conditions, i.e., we con-
sider an infinite two-dimensional array of gammadions. In the
present case the film thickness is 175 nm, the groove width
450 nm, and the unit-cell length is 2500 nm. This model with
an instantaneous response corresponds to a lossless medium.

Alongside each structure in Fig. 1 we have placed the flow
maps (FM) of the reflected light obtained as the normal pro-
jection of the total Poynting vector S = E × H onto the in-
cident light propagation direction. The PCS is excited with
a linearly polarized ultra-short pulse having a temporal width
of about 10 fs and the reflection is recorded in the near field
approximately 0.6λ (λ ≈ 800 nm) above the surface. For all
figures the dark background of the FMs refers to low inten-
sity while brighter areas generally stand for higher intensities.
More accurate perception can be achieved in the online color
coded version where increasing intensity is represented as
color change from blue over yellow to red. Examination of the

FIGURE 1 (color online) Left-hand side: Top view of two PCSs where L is
the enantiomer of R. Right-hand side: Corresponding FMs when exciting the
structures with linearly polarized light as indicated by the arrows

FMs in Fig. 1 for linearly polarized excitation clearly shows
that the FM of the enantiomer is the mirror image of the FM of
the original structure, but loses its fourfold rotation symmetry.
The latter has also been observed experimentally in [2].

In contrast, the FMs lose their mirror symmetry but retain
their fourfold rotation symmetry if the structures are excited
with circularly polarized light, as can be seen in Fig. 2. The
upper part of Fig. 2 shows the FMs of the left hand gamma-
dion as shown in Fig. 1 excited with left circularly polarized
light (upper left), and right circularly polarized light (upper
right), respectively. The lower part of Fig. 2 shows the cor-
responding FMs of the right hand gammadion for identical
excitation conditions. It is clearly observable that the FMs of
the enantiomers excited with circularly polarized light of the
same handedness are no longer mirror images of each other.
Instead, the mirror symmetry is conserved when comparing
the PCS with opposite chirality and opposite light polariza-
tion, i.e., the FMs top left and down right as well as top right
and down left are mirror images.

To generalize beyond our model of purely dielectric ma-
terial, we have also performed numerical simulations using
the finite element frequency-domain (FEM) method to solve
for the electromagnetic fields associated with an individual
fourfold chiral gammadion opening in a metallic film anal-
ogous to those employed in the experiment of [2]. In this
approach Maxwell’s equations are solved in the frequency do-
main along with the constitutive relation D(r, ω) = ε(r, ω) ·
E(r, ω), where at frequency ω0 the space and frequency-
dependent dielectric constant ε(r, ω) is obtained via the
Fourier transform of ε(r, t). The shape of the gammadion is
shown as the dashed-line in Fig. 3a, which we take as our ref-
erence scenario. In each of the scenarios plotted in Fig. 3 a cir-

FIGURE 2 (color online) FMs of the reflected light by the PCSs L and R,
see Fig. 1, when illuminating the structures with circularly polarized light as
as indicated by the arrows



REICHELT et al. Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures 99

FIGURE 3 (color online) Taking example (a) as our reference scenario,
where a clockwise polarized field is incident on a anti-clockwise PCS, we
illustrate the actions of (b) reversing the incident polarization, (c) revers-
ing the PCS handedness, and (d) reversing both the incident polarization
and the handedness of the PCS. The dashed line indicates the shape of the
gammadion

cularly polarized field of the indicated handedness is incident
onto the gammadion traveling into the page, and for variety
we here plot the electric field intensity after the generated EM
fields have passed through a cross-circularly polarized filter of
opposite handedness. The gammadion is a 140 nm thick gold
film, with dielectric constant ε(r, ω = ω0) = −8.68 −1.2i for
an incident frequency ω0 = 3 ×1015rad s−1, with the gold re-
moved from the region inside the dashed line in Fig. 3a, all
non-gold regions being treated as vacuum ε(r, ω0) = 1. The
complex, frequency dependent dielectric constant for gold
indicates that its linear response is lossy and no longer in-
stantaneous. Figure 3b and c show the effects of reversing
the handedness of the incident field and the PCS chirality, re-
spectively, with respect to the reference scenario, and clearly
the electric field intensity is different. In contrast, if we re-
verse both the handedness of the incident field and the twist of
the medium as shown in Fig. 3d, then the electric field inten-
sity is indistinguishable to the mirror image of the reference
scenario. Thus, the conclusion drawn for the example of the
dielectric PCS that the interaction between the PCS and light
is sensitive to the polarization state of the incident light is seen
also to apply to the lossy metallic PCS. From these exam-
ples we see that broken enantiomeric symmetry is a generic
property of planar chiral structures.

3 Analytical considerations

To substantiate our numerical findings we ana-
lyze analytically the general symmetry properties of the FMs
as obtained from Maxwell’s equations. For this purpose,

we start from the wave equation for the electric field in
frequency space

∇ ×∇ × E − ω2

c2
E = ω2

c2
f(r)χ(ω)E(r, ω) , (3)

and determine the magnetic field from Faraday’s law

H(r, ω) = − i

µ0ω
∇ × E(r, ω) . (4)

The FM is obtained as the normal projection of the Poynting
vector, which is given in frequency space by

n · S(r, ω) = 1

2
n · (E∗(r, ω)× H(r, ω))+ c.c.

= I 1

µ0ω
n ·

(∑
i

E∗
i ∇Ei − (E∗ ·∇)E

)
(5)

In the following, we shall view the right-hand side of (3)
as a source term. A formal solution of (3) including the proper
initial/boundary conditions is then obtained with the aid of
the Green tensor corresponding to the homogeneous wave
equation [7] on the left-hand-side of (3):

E(r, ω) = E0(r, ω)

+ ω2

c2

∫
d3r ′G(r− r′, ω) f(r′)χ(ω)E(r′, ω)

= E [E0(r, ω), f(r)] . (6)

Thus, the total field of the interacting system can be seen as
a functional of the incident field E0(r, ω) and the patterning
of the chiral structure as reflected in the scalar function f(r).
The integral signifies non-local relations between the field in-
teracting with the structure and is taken over the full domain of
the associated integration variable.

In frequency space the Green tensor can be expressed as

G(r, ω) =
(

I + c2

ω2
∇ ⊗∇

)
G(r, ω) , (7)

G(r, ω) = 1

4πr
eiωr/c, (8)

where G is the Green function of the scalar wave equation and
I the unit tensor. The first term on the RHS of (7) corresponds
to the solution of the scalar wave equation, whereas the second
term accounts for non-paraxial contributions proportional to
∇(∇ · E), which can be seen by partially integrating the RHS
of (6) and using ∇ · D = ε0(∇ · E +χ∇ · f(r)E) = 0. We re-
fer to such terms as non-paraxial since they only contribute
significantly if the patterning of the PCS varies on the scale
of the optical wavelength, otherwise one may approximate ∇ ·
E = 0 as in the usual paraxial approximation where the elec-
tric field is treated as strictly transverse [8]. (Another view of
the non-paraxial terms will be given in the next section).

Next we turn to the symmetry properties of the electric
and magnetic fields under in-plane rotations and mirror in-
version at a line in the plane of the PCS. To set the stage
for studying the symmetries we first investigate the symmetry
properties within the paraxial approximation. First we notice
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that due to the diagonal character of the Green tensor in the
paraxial approximation, the polarization state of the initial
field is conserved so that there is no polarization conversion
and the paraxial approximation predicts a dark FM in cross-
polarization. Furthermore, for normal incident light, we have
n · E = n · E0 = 0, so only the first term on the RHS of (5)
contributes to the FM. Since the scalar Green function is obvi-
ously invariant both under rotations and mirror inversion, i.e.,
G(Dϕ r, ω) = G(Mr, ω) = G(r, ω), we obtain for the electric
field in the paraxial approximation

Epar(Dϕ r, ω) = Epar [E0(Dϕ r, ω), f(Dϕ r)
]
,

Epar(Mr, ω) = Epar [E0(Mr, ω), f(Mr)] . (9)

To derive (9), we made the substitutions r′ → Dϕ r′ and r′ →
Mr′ for the dummy integration variable respectively. For
a normally incident plane wave E0(Dϕ r, ω) = E0(Mr, ω) =
E0(r, ω) is invariant under rotations or the mirror operation,
independent of its polarization state. Thus, the scattered elec-
tric field within the paraxial approximation reflects all sym-
metry properties of the PCS, as does the normal component
of the Poynting vector since the normal component of the
gradient operator is invariant under in-plane rotations or re-
flections.

Turning next to the symmetry properties of the field
including the non-paraxial terms we notice that the non-
diagonal elements of the Green tensor couple different polar-
ization components, such that an initially linearly polarized
light beam will experience a partial polarization conversion.
Thus, an FM obtained in a cross-polarization arrangement
shows corrections beyond the paraxial approximation. Apply-
ing D−1

ϕ , respectively M−1 to (6) and inserting the transform-
ation properties properties of the full Green tensor

D−1
ϕ G(Dϕr, ω)Dϕ = G(r, ω) (10)

M−1G(Mr, ω)M = G(r, ω) , (11)

we obtain the transformed functional relations

D−1
ϕ E(Dϕr, ω) = D−1

ϕ E
[
D−1

ϕ E0(Dϕ r, ω), f(Dϕ r)
]
,

M−1 E(Mr, ω) = M−1 E
[
M−1 E0(Mr, ω), f(Mr)

]
. (12)

The FM obeys rotational symmetry, if n · S(r, ω) =
n · S(Dϕ r, ω). If the scattered field gathers components nor-
mal to the PCS, the second term on the RHS of (5) also
contributes and the flow map displays rotational symmetry
only if both |E(Dϕr)|2 = |E(r)|2 and n · [E∗(Dϕ r) · (D−1

ϕ ∇)
]

E(Dϕr) = n · (E∗(r) · ∇)E(r). These conditions can only
be fulfilled if the electric field is an eigenstate of the ro-
tation operator to a complex eigenvalue on the unit circle,
i.e., D−1

ϕ E(Dϕr) = λE(r). From (6), it can be seen that
λE(r) = E [λE0(r), f(r)]. Obviously, the total electric field
displays arbitrary (discrete) rotational symmetries of the PCS
if and only if the initial state is also an eigenstate of the rota-
tion operator D−1

ϕ E0(Dϕ r) = λE0(r) to the same eigenvalue.
These initial states are the right- and left-handed circularly
polarized states with eigenvalues λ± = exp(∓iϕ). Only if the
angle of rotation is an integer multiple of π, the eigenval-
ues are degenerate and arbitrary linear superpositions of left
and right-handed circularly polarized states are eigenstates of

the corresponding rotation operator. Thus, for an arbitrarily
polarized state, the FM exhibits only a twofold rotational sym-
metry, provided the underlying structure exhibits a 2n-fold
rotational symmetry. These results are in perfect agreement
with our numerical findings.

Similarly, enantiomeric symmetry of the FM requires
M−1 E(Mr) = λER(r), where ER ≡ E [E0, f(Mr)] is the
field obtained if the enantiomer is excited with the same ini-
tial polarization. This condition is fulfilled if and only if the
initial state is an eigenstate of the mirror operator that con-
nects the two enantiomeric structures. These are the states
polarized parallel or perpendicular to the line of reflection
with the eigenvalues λ = ±1, respectively. For an arbitrar-
ily polarized state, the enantiomeric symmetry is broken. In
particular, for a circularly polarized state, M−1 E±

0 ∝ E∓
0 , we

have E±(Mr) = E
[
E∓

0 , f(Mr)
] 
= E±

R(r). Instead, the enan-
tiomeric symmetry is recovered if the handedness of the chiral
structure and the exciting light field are reversed simultan-
eously.

Altogether, the analytical considerations presented here
are in full agreement with our performed numerical simula-
tions for all kinds of polarization states of the exciting light
field. However, it should be noted that the lack of mirror sym-
metry for linearly polarized light which has been observed
in the experiment of [2] cannot be reproduced by our sim-
ple model assumptions. By means of a linear isotropic opti-
cal response function of the material, enantiomeric symmetry
is always conserved if the sample is excited with incident
light polarized parallel or perpendicular to the symmetry axis
connecting the enantiomers. This symmetry property is also
conserved if we insert a truly two-dimensional anisotropic
susceptibility where the anisotropy results from the pattern-
ing of the structure itself. In this case, the susceptibility of the
enantiomer is obtained as χ

R
(r) = M−1χ(Mr)M and trans-

forms in the same manner as the full Green tensor.

4 Polarization coupling

The analytic considerations of the last section
showed explicitly that polarization coupling due to the non-
paraxial terms is a key ingredient underpinning the bro-
ken enantiomeric symmetry observed for circularly polar-
ized fields. However, the model employed here of a locally
isotropic and non-magnetic medium would seem to disal-
low polarization coupling since the induced polarization and
electric field are by necessity in the same direction. In this sec-
tion we discuss how polarization coupling can arise within
our model, and this will also give an alternative view of the
non-paraxial contributions and the polarization coupling that
results from use of the tensorial Greens function.

We start from (3) written in the form

∇2 E −∇(∇ · E)+ ω2

c2
E = −µ0ω

2 P(r, ω) , (13)

where the polarization is given by P(r, ω) = ε0 f(r)χ(ω)·
E(r, ω). According to Helmholtz theorem, the electric field
can generally be decomposed into transverse (⊥) and longi-
tudinal (||) components E = E⊥ + E||, with ∇ · E⊥ = 0 and
∇ × E|| = 0. Furthermore, in the regions of vacuum outside
the PCS where the fields are measured experimentally the
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field is strictly transverse. For this reason we seek the wave
equation for the transverse part of the field alone. This may
be accomplished using the transverse delta-function δ⊥

ij (s) to
project out the transverse part of a field V, in terms of which
the transverse part of the vector field can be calculated from
the total field as

V⊥,i(r, t) =
∑

j

∫
d3r′δ⊥

ij (s)Vj(r′, t) , (14)

with i, j = x, y, z and s = r − r′. The transverse delta-
function has the explicit form [9]

δ⊥
ij (s) = δijδ(s)+ 1

4πs

∂2

∂si∂sj
, (15)

and for a purely transverse field we have the relation

0 =
∑

j

∫
d3r′ 1

4πs

∂2

∂si∂sj
V⊥, j(r′, t) . (16)

We note that projecting out the transverse part of a field is
a non-local operation involving a space integration, and also
causes coupling of the vector components since the transverse
delta-function is not diagonal in Cartesian indices.

By taking the transverse field projection of (13) we obtain
[
∇2 + ω2

c2

]
E⊥,i = −µ0ω

2 P⊥,i(r, ω) , (17)

where

P⊥,i(r, ω) =
∑

j

∫
d3r′δ⊥

ij (s)ε0 f(r′)χ(ω)

×[E⊥, j(r′, ω)+ E||, j(r′, ω)] . (18)

Using the explicit form for the transverse delta-function in
(15), one may write the polarization as the sum of local and
non-local contributions

P⊥,i(r, ω) = ε0 f(r)χ(ω)[E⊥,i(r, ω)+ E||,i(r, ω)]
−

∑
j

∫
d3r′ ε0

4πs

∂2

∂si∂sj
E||, j(r′, ω) , (19)

where in the last line use was made of (16) and the fact that the
electric displacement D = ε0 E + P is purely transverse.

In (19) that describes the experimentally significant trans-
verse component of the optical response the first term stands

for a local response with no polarization conversion. The sec-
ond, non-local term engages only the longitudinal component
of the field and polarization coupling takes place only because
of this term. This contribution has a form reminiscent of that
describing second order non-locality in crystal optics [10]. We
note that in absence of any patterning ( f(r) = const.) the lon-
gitudinal component vanishes and, hence, the nonlocal term.
Therefore, polarization coupling and non-locality have com-
mon origin and result from the wavelength scale patterning of
the PCS. Thus, if the longitudinal fields are neglected, as in
the paraxial approximation of Sect. 3, polarization coupling is
absent.

5 Conclusions

In conclusion, we have demonstrated both analyt-
ically and numerically that light interaction with planar chi-
ral structures depends on the polarization state of the excit-
ing light field. We have shown that for circularly polarized
light the enantiomeric symmetry is broken if the PCS is ex-
changed with its mirror structure while the handedness of
the exciting light is kept. For linearly polarized light, im-
ages of fourfold chiral structures exhibit only twofold rota-
tional symmetry. The observed sensitivity on the polariza-
tion state is only present beyond the paraxial approxima-
tion. The effects rely on the inhomogeneous patterning of
the structure and the appearance of longitudinal fields within
the PCS.
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